Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Радиотехника » Искусство схемотехники. Том 3 [Изд.4-е] - Пауль Хоровиц

Искусство схемотехники. Том 3 [Изд.4-е] - Пауль Хоровиц

Читать онлайн Искусство схемотехники. Том 3 [Изд.4-е] - Пауль Хоровиц

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 72 73 74 75 76 77 78 79 80 ... 111
Перейти на страницу:

Периферийные КМОП-устройства. Многие маломощные КМОП-кристаллы периферийных устройств представляют собой просто КМОП-копии их n-МОП аналогов, например параллельные порты 81С55 и 85С55. Их технические условия тоже почти точная копия исходных материалов по n-МОП-аналогам, правда с некоторыми изменениями. Зачастую эти технические условия не вполне корректны. Например, в них может задаваться выходной втекающий ток 2 мА при напряжении 0,4 В и вытекающий ток 100 мкА при напряжении 2,4 В, тогда как в действительности их формирователи с p-каналом могут обеспечивать вытекающий ток 2 мА, в частности, при напряжении 2,4 В. Входные пороги также могут быть перепутаны. Другая вещь, о которой следует побеспокоиться при использовании КМОП-приборов, является склонность к наводке плавающих потенциалов на входах при третьем состоянии шины. Фирма Harris и Intel добавляют в схему цепь «поддержки шины», которая вводит небольшую положительную обратную связь на вход для предотвращения появления тока режима класса А из-за плавающего потенциала на входах.

Остерегайтесь периферийных КМОП-устройств, которые потребляют ток «покоя», поскольку в них имеется тактовая синхронизация. Например, УАПП типа 65С51 и 82С52 потребляют ток около 2 мА на их рекомендованной частоте генератора (1,84 МГц при 1,4 мА/МГц для 65С51). Вы могли бы и выключить генератор, но тогда УАПП не смог бы принимать данные, например команду на включение. Другими периферийными КМОП-устройствами с токами покоя от 1 до 5 мА являются аналого-цифровые преобразователи, модемы видеоадаптеры, ЭСППЗУ и шифраторы клавиатуры. Сложные системы с несколькими такими приборами могут потреблять ток покоя 25–50 мА, что приводит к сроку службы 9-вольтовой батареи всего 10 ч. Если это вас устраивает, то прекрасно; в противном же случае необходимо отключать источник питания. Но будьте внимательны — входы и выходы могут себя вести дурно; например, шинные формирователи АЦП с третьим состоянием могут перейти в НИЗКОЕ состояние, когда отсутствует питание этого АЦП (в этом случае используйте отдельный КМОП формирователь третьего состояния).

Формирователи сигналов стыка RS-232 традиционно представляют собой мощные приборы: классический счетверенный формирователь 1488 потребляет ток в статическом режиме ±20 мА без учета тока нагрузки, а счетверенный приемник 1489 потребляет ток 15 мА. Некоторые современные кристаллы стыка RS-232 работают с малой мощностью потребления. Здесь описывается несколько их хороших разновидностей:

МС145406 фирмы Motorola. Он представляет собой строенный КМОП-формирователь/приемник, который будет работать при напряжениях источника питания от ±5 до ±13 В и имеет мощность рассеяния не более 15 мВт во всем этом диапазоне. Выходные КМОП-формирователи дают перепад выходного сигнала в пределах общего перепада напряжения питания, так что вы можете получить требуемый размах сигналов стыка RS-232 даже при напряжении питания ±5 В. Различные приемы были использованы в этой конструкции, с тем чтобы обеспечить работу КМОП-схемы с общим напряжением питания вплоть до 26 В, и допустить размах сигнала на входе на 20 В выше этого перепада напряжения.

LT1032. Это счетверенный биполярный формирователь сигнала стыка RS-232 с диапазоном напряжения источника питания от ±5 до ±15 В и током покоя 0,5 мА. Его можно выключать (нулевой ток) с помощью контакта управления; при выключении сами выходы переходят в третье состояние.

LT1039. Это строенный биполярный формирователь/приемник с диапазоном напряжений питания от ±5 до ±15 В и током покоя 4 мА. Аналогично схеме LT1032 у него имеется контакт выключения. В нем также предусмотрен контакт управления, который позволяет оставлять один из приемников во включенном состоянии, в то время как остальная часть кристалла отключается; вы можете использовать это для включения остальной части самого кристалла, когда что-нибудь поступает на вход. В выключенном режиме выход переходит в состояние с высоким полным сопротивлением.

Серия MAX230-239/ICL232; LT1080/1. Эти приборы, выпускаемые фирмами Maxim, Intersil и Linear Technology, представляют собой сдвоенные формирователи/приемники с внутренними преобразователями напряжения, так что они могут работать от единственного источника питания с напряжением +5 В, выдавая выходные сигналы с размахом ±9 В. Все они, за исключением МАХ233 и 235 (которые имеют встроенные конденсаторы), требуют подключения к преобразователям напряжения четырех внешних танталовых конденсаторов; их выходные сигналы с напряжением ± 9 В пригодны для питания низкотоковых нагрузок. Их ток покоя составляет 5 мА. Части этих кристаллов, а именно преобразователи напряжения, выпускаются отдельно, как схема МАХ680 или LT1026,- преобразователи единственного напряжения +5 В в сдвоенное напряжение ±10 В; их можно использовать для организации питания всех других приведенных выше кристаллов стыка RS-232.

DS14C88/89. Фирма National переработала по КМОП-технологии свою классическую биполярную схему с аналогичным наименованием. Формирователь 14С88 работает при напряжениях источника питания от ±4,5 до ±12 В, вырабатывая обычный для КМОП-схем размах сигнала до напряжений питания. При напряжении питания ±5 В этот счетверенный формирователь потребляет ток 30 мкА, макс, (ненагруженный), в то время как приемник потребляет 0,9 мА, макс, от его единственного источника питания с напряжением +5 В. (Фирма National также выпускает КМОП-кристаллы стыка RS-422 (DS26C31-32).)

14.18. Пример проектирования на микропроцессоре: регистратор данных типа «градус-день»

Давайте приведем пример разработки, где все вышеприведенные идеи сведены воедино. Мы разработаем небольшой регистратор данных с питанием от батарей, чья задача проводить текущий контроль температуры окружающей среды единожды за минуту, сохраняя средние значения «градус-день» в ОЗУ для последующего считывания их через последовательную систему передачи. Вы могли бы разместить такой прибор в удаленном месте, нанося ему визиты дважды в год, во время которых вы считываете его данные в портативный компьютер. Или вы могли предпочесть «собрать урожай» этих регистраторов, а затем считать их данные, после того как принесете их снова домой.

Прибор будет работать на трех щелочных C-элементах, со сроком службы батареи по крайней мере год. Для поддержания потребляемой мощности на низком уровне мы будем использовать КМОП периферийные устройства и КМОП-микропроцессор типа контроллера со встроенными режимами остановки. Применим режим включения источника питания самого ЦПЭ и схем предварительной обработки в течение кратковременных интервалов сбора данных, с запуском его от маломощного кристалла хронометрирования. Поскольку последовательный порт будет использоваться только время от времени, мы сделаем также и здесь выключение источника питания. Наша частная схема не является никоим образом уникальной; наряду с ней мы рассмотрим и альтернативные схемные решения.

ЦПЭ. На рис. 14.43 показана схема нашей разработки.

Рис. 14.43. Пример схемы на универсальном микромощном процессоре

Мы начали с выбора КМОП-контроллера МС146805 фирмы Motorola, который предназначен для работы при напряжении питания вплоть до 3 В, в него входят встроенные схемотехнические решения для перехода в режим ОЖИДАНИЯ (малая мощность, работают генератор и таймер) или режим ОСТАНОВКИ (нулевая мощность, генератор остановлен, восстановление только через прерывание или сброс). В модификации с суффиксом - Е2 используются внешние ПЗУ и ОЗУ, но она имеет и внутреннее ОЗУ объемом 112 байт. При работе с источником питания напряжением 5 В ЦПЭ потребляет при функционировании ток 7 мА (тактовая синхронизация с частотой 5 МГц), в режиме ОЖИДАНИЯ-1 мА и в режиме ОСТАНОВКИ — 5 мкА. Поскольку нам необходимо регистрировать данные в течение только нескольких миллисекунд раз в минуту, а восстановление из режима ОСТАНОВКИ (благодаря запуску кварцевого генератора) занимает в типовом случае 30 мс, мы минимизируем мощность потребления с помощью использования формируемого внешней схемой прерывания, которое подготавливает прибор к каждому измерению.

Альтернативное решение — использование формируемого с помощью таймера ЦПЭ в режиме ОЖИДАНИЯ прерывания — обеспечивает средний ток потребления ЦПЭ по крайней мере 1 мА, что соответствует сроку службы батареи С-элементов только полгода. Этот срок можно, конечно, довести и до года, т. е. используя D-элементы; другое решение могло бы быть связано с работой на более низкой частоте генератора (скажем, 1 МГц), где ток в режиме ОЖИДАНИЯ существенно ниже. Еще одна возможность - это работа при напряжении питания 3 В, где ток потребления в режиме ожидания составляет приблизительно 150 мкА при тактовой частоте 1 МГц. Любое из этих решений вполне хорошее. В этом же примере мы будем придерживаться методов выключения питания, поскольку удастся продемонстрировать дополнительные технические приемы. При этом также получается приемлемая система хронометрирования с помощью кристалла календаря.

1 ... 72 73 74 75 76 77 78 79 80 ... 111
Перейти на страницу:
Тут вы можете бесплатно читать книгу Искусство схемотехники. Том 3 [Изд.4-е] - Пауль Хоровиц.
Комментарии